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Abstract 

 
Artistic font design has become an integral part of visual media. However, without prior 
knowledge of the font domain, it is difficult to create distinct font styles. When the number of 
characters is limited, this task becomes easier (e.g., only Latin characters). However, designing 
CJK (Chinese, Japanese, and Korean) characters presents a challenge due to the large number 
of character sets and complexity of the glyph components in these languages. Numerous 
studies have been conducted on automating the font design process using generative 
adversarial networks (GANs). Existing methods rely heavily on reference fonts and perform 
font style conversions between different fonts. Additionally, rather than capturing style 
information for a target font via multiple style images, most methods do so via a single font 
image. In this paper, we propose a network architecture for generating multilingual font sets 
that makes use of geometric structures as content. Additionally, to acquire sufficient style 
information, we employ multiple style images belonging to a single font style simultaneously 
to extract global font style-specific information. By utilizing the geometric structural 
information of content and a few stylized images, our model can generate an entire font set 
while maintaining the style. Extensive experiments were conducted to demonstrate the 
proposed model's superiority over several baseline methods. Additionally, we conducted 
ablation studies to validate our proposed network architecture. 
 
 
Keywords: Generative adversarial networks, Hangul Fonts, Image-to-Image translation, 
Style transfer. 
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1. Introduction 

With the continued advancement of technology in the digital era, images and videos have 
become major components of our daily activities. Therefore, visual media has become a major 
study target. Image processing, computer vision, and computer graphics can be utilized to 
study visual media. However, creating scalable generative models to capture visual media 
distributions remains as a significant challenge in machine learning. Extensive research has 
been conducted in the fields of style transfer [1], image generation [2], image classification 
[3], and image-to-image translation for capturing visual media distributions. These techniques 
can be utilized to generate fonts to simplify the font design process.  

Fonts are necessary to represent text in specific styles and sizes. They play an important 
role in modern media because they are representations of text that not only add esthetic value 
to multimedia, but also add relevant property value. However, creating diverse font styles is 
difficult for novice users. Additionally, conventional calligraphic and artistic font design is a 
tedious and labor-intensive task based on the complexity of styles and content, particularly in 
the case of Chinese, Japanese, and Korean fonts. To create diverse font styles, a user must 
create different files for each distinct font style. For example, if a designer wants to create 100 
different font styles, then they must create 100 different font files corresponding to each unique 
style by generating a set of characters for each language from scratch. This requires significant 
time and effort from designers. Therefore, an automated method is desirable to facilitate the 
font design process for large-scale-character languages. The problems associated with such a 
method can be resolved by combining techniques from the previously mentioned fields, where 
deep learning plays a vital role in font generation. 

 

 
Fig. 1. Problems while transferring one font to another 

 
A number of studies on image-to-image translation have been conducted and mapped onto 

the font design process to reduce the workload of font designers. However, such approaches 
work on conditional strategies and have significant limitations. (1) The method presented in 
[4] requires paired training data to learn style patterns in the target domain in a supervised 
manner. (2) The method from [5] does not require paired training examples, but it is only able 
to learn one-to-one mappings instead of many-to-many mappings for domains with complex 
relationships. (3) Additionally, based on fixed reference content, existing methods require 
fine-tuning on unseen domains. (4) The generalization ability of existing models is also limited 
by one-hot category embedding concepts. (5) Most font generation work focuses on font 
transfer, which entails transferring glyphs from one font to another font, but it is difficult for 
a model to capture the style patterns of a target domain when there are large differences 
between domains and glyph representations, as shown in Fig. 1. (6) Instead of using multiple 
images of a style to capture style features, existing methods only use a single image of the 
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target font domain. To address these issues, we propose a novel method for synthesizing fonts. 
First, to handle problem (5), we propose using the internal and external structures of content 
references instead of complete glyph images, which contain larger pixel values that are less 
relevant. Second, to preserve important style properties and achieve sufficient representation 
capabilities, we propose the use of multiple images of a target style for extracting style features. 
Unlike traditional approaches that focus on transferring styles by retaining content, the goal of 
our method is to maintain styles while altering content glyphs based on geometric 
representations instead of using one-hot content embedding, which limits generalization 
ability. To verify the capabilities of the proposed method, we conducted qualitative and 
quantitative experiments to confirm multi-style font generation with consistent characteristics. 

2. Motivation 
The primary goals of this work can be summarized as follows. 

1. Style consistency: Perform content transfer instead of font transfer and verify the 
generated font styles using similarity and dissimilarity metrics. 

2. Readability: Use k stylized images and character content features as inputs and 
generate a complete character set for the desired font style without compromising 
content readability or style.  

3. Reduce fine-tuning: Instead of fine-tuning a model on a new font style, we find the 
closest style in a learned distribution to generate the remainder of the font set because 
our model does not require paired training examples or complete ground-truth labels 
for the corresponding domain.  

4. Preserving structural properties: To preserve the structural properties of content, we 
make use of geometric representations of content instead of complete font images. 
This allows us to filter out less relevant information and only preserve structural 
properties as content. Using only the geometric structures of content can reduce the 
amount of data that must be processed.  

5. Preserving style properties: To learn sufficient style representations, we make use of 
multiple font style images from each domain instead of using only a single image for 
style extraction. 

6. Legibility: The legibility of generated characters is verified using a convolutional 
neural network. 

3. Related Research 
In recent years, many studies have utilized deep learning for font synthesis and generalization. 
Regarding architectures, these studies can be roughly subdivided into model-driven, deep 
neural network (DNN)-based, and Bayesian deep- learning-based approaches.  

3.1 Prerequisite Knowledge 
Large-scale data have empowered deep learning algorithms to achieve rapid advancement. 
Specifically, generative adversarial networks (GANs) have the ability to learn complex 
distributions and synthesize high-quality and semantically meaningful samples from standard 
data samples. Goodfellow et al. [6] introduced the first GAN in 2014. Their model 
outperformed other generative models at synthesizing images. Since then, GANs have become 
a popular research topic in computer vision and multimedia. A GAN consists of two 
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competitive neural networks called a generator and discriminator. The task of the generator is 
to generate realistic samples to deceive the discriminator by taking noise as inputs, whereas 
the task of the discriminator is to discriminate samples generated by the generator from real 
samples. Training continues until the generator is able to fool the discriminator in an 
adversarial game in a mix-max manner.  

Two main research directions have been considered for GANs. The first research direction 
attempts to improve training, efficiency, and stability issues related to GANs using information 
theory [7, 8]. The second research direction focuses on GAN applications and architectures in 
the field of computer vision [9, 10]. GANs perform very well at learning complex distributions. 
However, there are three main challenges that must be considered: mode collapse, vanishing 
gradients, and a lack of output control. Therefore, the authors of [11] proposed conditional 
GANs (cGANs) as an improved GAN architecture. A cGAN has the same architecture as an 
original GAN, except that an extra condition is added to the generator and discriminator 
networks to address the aforementioned challenges related to GANs. The conditions applied 
in cGANs can be class labels, text, or images depending on the target problem. A cGAN 
empowers all image-synthesis applications. The following section discusses the strengths of 
GANs in terms of font generation. 

3.2 Font generation 

3.2.1 Model-driven based font generation studies 
Manual font design requires professional skills, typography expertise, and artistic capabilities. 
Additionally, the design of fonts from scratch requires significant time and labor. Therefore, 
an automated process is required to synthesize fonts from a few handcrafted samples of an 
existing font. Recently, several model-driven font foundation studies have been presented. The 
authors of [12] proposed an outline-based interpolation method to synthesize new fonts by 
introducing heuristics and interpolation in a high-dimensional space. The concept of 
interpolating font parameters was initially introduced by Knuth [13]. Based on [13], this 
method was extended to Chinese characters [14] and some researchers have focused on 
parametric models [15]. In addition to parametric approaches, a number of other model-driven 
approaches have been proposed, including stroke-level font generation [16], statistics-based 
methods [17], contour-based methods [18], and transformation-based methods [19]. However, 
these methods suffer from problems such as a limited ability to extrapolate new fonts based 
on the point-wise correspondence between glyphs of the same characters in different fonts. 
Additionally, constructing handcrafted features and manually adjusting complicated 
parameters for diverse stylizations is a cumbersome task. 

3.2.2 DNN-based font generation studies 
Based on advancements in various fields of technology, the development of imaging and data 
has also accelerated. Data-driven approaches have become popular for image processing and 
analysis techniques. Recently, these techniques have been applied to automate the font 
synthesis process using DNNs in the fields of computer vision and computer graphics. Thus 
far, numerous deep-learning-based architectures have been proposed that are either 
specifically designed or appropriate for font synthesis. Such advancement allows researchers 
to model glyphs based on images. Image synthesis tasks using DNNs can be further subdivided 
into two categories: image-to-image translation and noise-to-image translation. A number of 
studies have been conducted on these subdivisions.  

The concept of image synthesis dates back to image analogies [20], where a framework 
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utilizes two stages called the design phase and application phase to create analogous results 
by taking a pair of images as inputs. Upchurch [21] considered the image analogy concept, 
mapped it to an image synthesis task, and proposed a revised variational autoencoder to 
separate styles from content. Recently, several attempts have been made to utilize GANs for 
font synthesis applications. Zi2zi [22], which is an extended version of pix2pix [4], was the 
first attempt to use GANs to synthesize a target font using a combination of the methods 
discussed in [4, 23, 24]. Additionally, the authors of [25] proposed an example-guided font 
generation method using a U-net-based generator for GANs and claimed that their strategy 
makes it easier to balance loss functions compared to the method described in [22]. There are 
many variants of font generation that utilize GANs. For example, DCFont [26] is an endwise 
learning system that can generate a complete Chinese font library by considering a limited 
number of predesigned characters. Chinese font generation is framed as a mapping from an 
existing font to a personalized artistic style when utilizing the CycleGAN [5] concept. To learn 
and produce high-quality fonts, SCFont [27] recently introduced a stacked DNN to capture 
detailed content and synthesize high-quality fonts using a multi-stage architecture design and 
glyph-structure-guided information. MC-GAN [28] makes use of stacked cGANs to predict 
coarse glyph shapes using a glyph network and applies textures to output grayscale glyphs 
through an ornamentation network. This method yields impressive results, but it is limited to 
alphabetic characters and lacks generalization abilities based on the large number of 
parameters required for the ornamentation network. As a diverse one-stage framework, AGIS-
Net [29] has been proposed. This method can generate shape and texture styles by considering 
a few predesigned samples.  

In addition to image-based approaches, noise-based approaches for font synthesis have also 
emerged, providing diverse and high-quality results. GlyphGAN [30] is a method inspired by 
deep convolutional GANs [31] that considers the style consistency, legibility, and diversity 
characteristics of generated fonts in an unsupervised manner. However, this method is unable 
to control output styles because it learns distributions from noise. Therefore, mode collapse 
may occur. FontGAN [32] uses a combined GAN structure for styling and de-styling Chinese 
characters. However, none of the aforementioned architectures are specifically designed to 
synthesize large-scale fonts with high readability and consistency from a few samples of 
handcrafted stylized characters. Additionally, considering a fixed reference font as input 
content fails to capture the internal and outer structures of actual characters when the target 
domain has large dissimilarity from the content in terms of style. Furthermore, existing 
methods focus on font style transfer from one domain to another by maintaining content and 
altering style instead of performing content transfer. In this paper, we propose a method for 
performing content transfer by preserving styles from few-shot examples. Additional details 
and experiments for our model are described in the following sections, which highlight the 
superiority of our approach. 

4. Proposed Network Description 

4.1 Network Architecture Details 
Font design mainly relies on underlying geometric structure and shape content. Internal 
(skeleton) and external (edges) representations convey information related to connected curves, 
strokes, boundaries, and other structural properties. This information can be utilized for 
modeling instead of considering a complete image as a source font. Such images contain 
irrelevant features that must be filtered out to obtain specific local details and structural 
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information. Therefore, we utilize images containing edges and skeletons for a source font to 
preserve topological details for improved font synthesis. The content image inputs for our 
model contain edges and outlines that are concatenated channel-wise for enhanced structural 
and semantic guidance that is relevant to the content domain. 

Additionally, to obtain style information regarding the target font, instead of using an 
individual target font image to extract style information, we consider a randomly selected set 
of k images from the target font domain. The reason for utilizing k stylized images for reference 
is to extract style-relevant and common features instead of style-irrelevant features, which 
should be ignored. This allows our model to devote additional attention to the target style. For 
example, if we input one bold font style image into our model to extract its style (here, style 
represents the boldness and strokes of the font), it will not be able to extract in-depth font-
specific style information that could be mapped to source content images, leading to a loss of 
generalization ability. Therefore, at each iteration, k < n images from the target domain are 
inputted into the style encoder by concatenating the k selected images in a channel-wise 
manner. To improve robustness, a combination of many different images is utilized for 
extracting styles.  

Let 𝐼𝐼𝑠𝑠𝑠𝑠𝑋𝑋  represent the concatenated edge and skeleton images of the content font. The target 
style reference is represented by 𝐼𝐼𝑠𝑠𝑠𝑠𝑌𝑌 , which is channel-wise concatenated with the k stylized 
images. The proposed model is based on an encoder-decoder architecture for font character 
synthesis, which is defined by a content edge-skeleton encoder (𝐸𝐸𝑠𝑠𝑠𝑠), style encoder (𝐸𝐸𝑠𝑠𝑠𝑠), 
style decoder (𝐺𝐺𝑌𝑌), and multi-task discriminator (𝐷𝐷𝑌𝑌). The complete network architecture is 
shown in Fig. 2.  

The content font inputted into  𝐸𝐸𝑠𝑠𝑠𝑠 is in the form of a geometric representation that contains 
the common features of the content characters after downsampling. Later, an encoded latent 
representation is passed into 𝐸𝐸𝑠𝑠𝑠𝑠 to represent the content characters onto which the target style 
should be mapped. The content characters are style-irrelevant but are used for character 
embedding based on the target font characters. Additionally, the style encoder can learn 
various font representations by considering inter-style consistency based on k stylized target 
images instead of a single style image. During the training stage, the content font and reference 
style are encoded into latent variables as follows: 
 
 𝑧𝑧𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑠𝑠𝑠𝑠(𝐼𝐼𝑠𝑠𝑠𝑠𝑋𝑋 ), (1) 

Fig. 1. The proposed network architecture. The Generator architecture consists of a content encoder, 
style encoder, and a decoder. The Discriminator takes both the real and generated images for the 
adversarial loss and the character classification loss. More details are provided in the main text. 
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 𝑧𝑧𝑠𝑠𝑠𝑠 = 𝐸𝐸𝑠𝑠𝑠𝑠(𝐼𝐼𝑠𝑠𝑠𝑠𝑌𝑌 ), (2) 
 
where 𝑧𝑧𝑠𝑠𝑠𝑠 and 𝑧𝑧𝑠𝑠𝑠𝑠 represent the content character latent variables from content domain X, 

and 𝑧𝑧𝑠𝑠𝑠𝑠 represents the style latent variable from the target style domain Y. Next 𝑧𝑧𝑠𝑠𝑠𝑠 combined 
with 𝑧𝑧𝑠𝑠𝑠𝑠 is fed into 𝐺𝐺𝑌𝑌 to synthesize images as follows: 
 
  𝐼𝐼𝑠𝑠𝑠𝑠_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑌𝑌  = 𝐺𝐺𝑌𝑌(𝑧𝑧𝑠𝑠𝑠𝑠 , 𝑧𝑧𝑠𝑠𝑠𝑠), (3) 
 

where 𝐼𝐼𝑠𝑠𝑠𝑠_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑌𝑌  denotes a generated image with the content of 𝑧𝑧𝑠𝑠𝑠𝑠  and style of 𝑧𝑧𝑠𝑠𝑠𝑠 . We 

propose using skip connections between 𝐸𝐸𝑠𝑠𝑠𝑠  and 𝐺𝐺𝑌𝑌  to facilitate enhanced style mapping. 
Additionally, the intermediate layer information of  𝐸𝐸𝑠𝑠𝑠𝑠 is passed into 𝐸𝐸𝑠𝑠𝑠𝑠 for content guidance. 
The goal of incorporating skip connections is to obtain features at all levels.  

 For adversarial training, a multi-task discriminator (𝐷𝐷𝑌𝑌) based on PatchGAN [4] was 
adopted in our model. The decoder outputs 𝐼𝐼𝑠𝑠𝑠𝑠_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑌𝑌  are fed into the discriminator as fake 
samples along with real samples 𝐼𝐼𝑠𝑠𝑠𝑠_real

𝑌𝑌  for discrimination. The goal of 𝐷𝐷𝑌𝑌  is not only to 
represent realness and fakeness for given samples, but also to classify characters. The key 
change in the 𝐷𝐷𝑌𝑌 model is the introduction of a dense layer following the flattened layer, which 
is used for character classification. The size of this layer depends on the total number of content 
characters on which the model is trained, similar to the method discussed in [33]. This 
improves the training of GANs for image synthesis. Additionally, it incorporates character 
stylization based on a few samples of the target style. 

During the testing stage, 𝐸𝐸𝑠𝑠𝑠𝑠  encodes unseen input target-style images into 𝑧𝑧𝑠𝑠𝑠𝑠  latent 
variables representing the target style. For content characters,  𝐸𝐸𝑠𝑠𝑠𝑠 encodes the desired content. 
The concatenated latent variables in  𝐸𝐸𝑠𝑠𝑠𝑠  and  𝐸𝐸𝑠𝑠𝑠𝑠  are passed to 𝐺𝐺𝑌𝑌 , which then generates 
complete stylized font set characters by utilizing few-shot samples of the desired style. After 
training, the model has learned sufficient local details and structural information related to 
content characters. Therefore, it is able to map an unseen style to unseen content, because 
content is not fixed in the form of one-hot embedding. 

4.2 Model Implementation Details 

4.2.1 Encoder Details 
To obtain font-style-specific and abstract details in an efficient manner, we employ two 
encoders, namely 𝐸𝐸𝑠𝑠𝑠𝑠 and 𝐸𝐸𝑠𝑠𝑠𝑠.  𝐸𝐸𝑠𝑠𝑠𝑠 uses six downsampling layers to obtain explicit features 
from content. Each layer uses a convolution operation and instance normalization [34] with a 
rectified linear unit (ReLU) as an activation function. Additionally, each second layer of 
information in  𝐸𝐸𝑠𝑠𝑠𝑠  is transformed into the corresponding layer in 𝐸𝐸𝑠𝑠𝑠𝑠  to obtain sufficient 
features at different scales from the given content’s internal and external structures. 𝐸𝐸𝑠𝑠𝑠𝑠 
contains six downsampling layers and each layer concatenates the latent information from the 
previous layers to preserve features ranging from abstract features to specific style features. 
Because the content is style irrelevant, we focus on learning representations of various fonts 
while maintaining content. Therefore, for enhanced style extraction and transfer between font 
sets, we employ skip connections from all layers of 𝐸𝐸𝑠𝑠𝑠𝑠 to G𝑌𝑌.  

4.2.2 Decoder Details 
To map the concatenated final latent variables to the target content images, we employ one 
decoder, namely 𝐷𝐷𝑌𝑌. This decoder contains the same number of upsampling convolutional 
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layers and uses the same operational settings as 𝐸𝐸𝑠𝑠𝑠𝑠 . Additionally, to refine 𝐼𝐼𝑠𝑠𝑠𝑠_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑌𝑌 , skip 

connections and structural objectives are used to obtain refined and high-quality results. 

4.2.3 Discriminator Details 
In our approach, we employ a patch-level discriminative model. This model receives channel-
wise concatenated positive and negative samples as inputs. It outputs score maps instead of 
single values based on a given positive and negative sample patch. Instead of the traditional 
ReLU, we employ the leaky ReLU function and perform no normalization. Leaky ReLU [35] 
has been proven to be effective at preventing the vanishing gradient problem and performing 
continuous optimization. To improve the discernibility of  𝐷𝐷𝑌𝑌 , a fully connected layer is 
implemented at the end of 𝐷𝐷𝑌𝑌. This layer is responsible for classifying generated characters 
with their true character labels which indicate the true character content of the input image. 
Additionally, it helps quantify the recognition capabilities for the given content. The size of 
the fully connected layer is selected based on the total number of characters used for training 
the model for example, in case of English alphabets we used 26 characters upper-case letters 
hence 26 true labels are considered for the fully connected layer.  

4.3 Learning Objective 
An objective function plays a pivotal role in the performance and quality of a model for image 
synthesis. In this study, several loss functions were combined. The full objective for our model 
can be formulated as follows: 
 
  ℒ∗ = ℒ𝑎𝑎𝑎𝑎𝑎𝑎 +  ℒ𝑐𝑐𝑐𝑐 +  ℒ𝐿𝐿1 + ℒ𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠 +  ℒ𝑓𝑓𝑓𝑓. (4) 

4.3.1 Adversarial Loss 
To achieve legibility, we employ conditional non-saturating GAN loss instead of min-max 
loss for training our model. This loss is an alteration of generator loss for handling the 
saturation problem with refined changes compared to min-max GAN loss. Similar to the 
original GAN loss function [6], the discriminator has the ability to classify generated images 
as fake images at the beginning of training because the quality of generated images is very 
low. Therefore, the term D(G(z)) in min-max moss has gradients near zero. To avoid this issue, 
non-saturating GAN loss is recommended for practical use [36]. Additionally, this function 
converges more quickly than the saturated GAN loss used in the original U-Net architecture. 
The adversarial loss in our model is formulated as follows: 
 
 ℒ𝑎𝑎𝑎𝑎𝑎𝑎(𝐷𝐷) =  𝔼𝔼𝑥𝑥,𝑦𝑦[log 𝐷𝐷(x, y)] + 𝔼𝔼𝑥𝑥,𝑧𝑧[log (1 − 𝐷𝐷(x,𝐺𝐺(x, z)],  (5) 

 
 ℒ𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺) =  −𝔼𝔼𝑥𝑥∗[log 𝐷𝐷(𝐺𝐺(x, c))]. (6) 

 
Instead of minimizing loss, the generator maximizes the logarithmic probability of images 

to be predicted as real instead of fake. This function also uses a stable weight updating 
mechanism. 

4.3.2 Content Classification Loss 
To verify that content transfer works well, we classified the content of generated images. We 
employed content classification loss in the discriminator to classify generated content to make 
it recognizable by the network and learn content in a manner that is more efficient. This loss 
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can be formulated as follows: 
 
 ℒ𝑐𝑐𝑐𝑐 =  − Ε�log 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐�𝑐𝑐∗|𝐼𝐼𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑌𝑌 �� − Ε�log 𝐷𝐷𝑐𝑐𝑐𝑐𝑐𝑐�𝑐𝑐|𝐼𝐼𝑠𝑠𝑠𝑠_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑌𝑌 ��, (7) 

where c* represents the label of the ground-truth image. By minimizing loss, 𝐷𝐷𝑦𝑦 learns to 
classify generated images into the correct content classes and 𝐺𝐺𝑦𝑦 learns to synthesize images 
that are more similar to the target content.  

4.3.3 Pixel-wise loss 
We adopted L1 regularized loss in our generator. Unlike other image synthesis tasks, font 
synthesis has more stringent requirements for the legibility and consistency of generated 
content. Therefore, to synthesize noisy images, we employed pixel-wise loss in the generator.  
 
 ℒ𝐿𝐿1 =  𝔼𝔼𝑦𝑦,𝑦𝑦′|| 𝐼𝐼𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑌𝑌 −  𝐼𝐼𝑠𝑠𝑠𝑠_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑌𝑌 ||1 *lambda, (8) 

 
where 𝐼𝐼𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑌𝑌  is a target style image preserving the same content given at the time of 
generation, 𝐼𝐼𝑠𝑠𝑠𝑠_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑌𝑌  is a generated image preserving the style of 𝐼𝐼𝑠𝑠𝑠𝑠𝑌𝑌 , and lambda is a 
hyperparameter. The weight of ℒ𝐿𝐿1 is set to zero when the content contains no corresponding 
glyph images in the desired style. However, during training, we have ground-truth images of 
every piece of content in the target style. Therefore, the weights of ℒ𝐿𝐿1 will always be non-
zero. 

4.3.4 Structural Similarity Loss 
To produce visually pleasing images, we adopted structural similarity loss in the generator. 
This type of loss can capture changes in structural information. It utilizes a Gaussian function 
to calculate the mean, variance, and covariance of given images. Therefore, regardless of 
contrastive conditions, it statistically calculates the differences between images as follows:  
 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) =  �2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝑐𝑐1�(𝜎𝜎𝑥𝑥𝑥𝑥+𝑐𝑐2)

�𝜇𝜇𝑥𝑥2+ 𝜇𝜇𝑦𝑦2+𝑐𝑐1��𝜎𝜎𝑥𝑥2+ 𝜎𝜎𝑦𝑦2+𝑐𝑐2�
. (9) 

 
The structural similarity index (SSIM) lies in the range of [0,1], where values close to one 

represent high similarity and values close to zero represent low similarity. 
  
 ℒ𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠 =  𝔼𝔼𝑦𝑦,𝑦𝑦′  [1− 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑦𝑦,𝐺𝐺(𝑧𝑧))], (10) 

 
where y represents 𝐼𝐼𝑠𝑠𝑠𝑠_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑌𝑌  and G(z) represents 𝐼𝐼𝑠𝑠𝑠𝑠_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑌𝑌 . The generator minimizes 

differences to learn structural information efficiently in the target domain. 

4.3.5 Feature Matching Loss 
In addition to basic pixel-level and structural-level loss, feature-level loss can also be utilized 
for high-quality image synthesis. Pixel-level loss yields visually acceptable results. However, 
it requires spatially aligned generated and target images to compute differences. Therefore, to 
compute differences at the feature level instead of the pixel level, feature matching loss is 
recommended for generating high-quality results. It computes the similarity between images 
using feature maps from different layers while ignoring the alignment of pixels.  
 
 ℒ𝑓𝑓𝑓𝑓 =  𝔼𝔼𝑦𝑦,𝑦𝑦′ ||𝑓𝑓(𝐼𝐼𝑠𝑠𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑌𝑌 )−  𝑓𝑓(𝐺𝐺(𝑧𝑧)||22 (11) 
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The generator minimizes the statistical differences between the features of 𝐼𝐼𝑠𝑠𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑌𝑌  and 𝐺𝐺(𝑧𝑧). 

Features are extracted from an intermediate layer of the discriminator, where information is 
more distilled compared to VGG19 outputs. The L2-norm is computed between the means of 
the extracted feature spaces of 𝐼𝐼𝑋𝑋 and 𝐼𝐼𝑌𝑌. 

5. Experiments and Results 
 In this section, we first introduce the parameter settings for the proposed model, target dataset, 
and baseline methods. Our model is then evaluated quantitatively and qualitatively to validate 
the superiority of the proposed approach. Finally, an ablation study is performed to 
demonstrate the importance of each component in the proposed method.  

5.1 Experimental Parameter Settings 
The proposed model was implemented using the TensorFlow software. We trained the model 
for 120 epochs on an NVIDIA 2080ti GPU using the Adam optimizer with a learning rate of 
0.0002. The weights 𝓛𝓛𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 and 𝓛𝓛𝑳𝑳𝟏𝟏were set to 10.0 and 100.0, respectively. Additional 
architectural and implementation details were described in Section 5.2. 

5.2 Dataset Details 
Very few datasets are publicly available for font synthesis tasks. Only a few were provided in 
[28, 29]. Therefore, we used the open-source Google Fonts (https://fonts.google.com/) 
application to prepare a dataset for Latin characters (English alphabets). This application 
provides fonts for 29 different languages. For a Korean character dataset, we utilized font 
styles from the same source. To prepare images of the Latin and Korean datasets, we used the 
Unicode-based module [37]. After preparing the datasets, we detected and removed duplicate 
font images to generalize our model. We also excluded font styles that did not support specific 
characteristics of the Korean language. Additionally, to obtain geometric representations of 
content, such as the inner and outer structures of the content fonts, we utilized existing 
approaches for obtaining the outline data [38] and inner structures [39] of the content. We 
applied the same methods to the Latin and Korean content to obtain geometric representations. 
To achieve enhanced performance, we constructed our dataset using 3740 font styles for 
English alphabets and 100 font styles for Korean characters. Each image was 256 × 256 pixels 
in size. In each experiment, we utilized 80% of the dataset for training and the remaining 20% 
of the dataset for evaluation. To evaluate the proposed and baseline methods, we utilized few-
shot stylized characters at inference time, even though we had ground-truth images. This was 
done (1) to see how well each model captured each style and (2) how well each model 
performed content-level transfer by preserving the style of each font using a few-shot character 
set.   

5.3 State-of-the-art competitors 

We considered two state-of-the-art methods for comparison: pix2pix and zi2zi. Pix2pix is 
based on GANs, which are commonly used for image synthesis. It uses paired image data to 
learn mappings between domains in a one-to-one manner. It cannot learn one-to-many 
mappings. Therefore, it can learn only one style at a time. Zi2zi extended the concept of 
pix2pix and added the style embedding concept to control and learn one-to-many styles 
simultaneously. Both methods aim to preserve content and change styles. The goal of our 
approach is to preserve styles and change content to reduce dissimilarity and fine-tuning 
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constraints. Therefore, we utilized the same dataset for all three methods and learned content 
while preserving styles. Additionally, zi2zi requires fine-tuning on unseen font styles. We 
exclude fine-tuning because our model does not require fine-tuning on unseen fonts. To 
exclude fine-tuning, we remove the style classification layer from zi2zi and evaluate it in the 
same setting as the proposed method. 

5.4 Experiment Results Evaluation 

5.4.1 Qualitative Analysis:  
In addition to comparing the effectiveness of our method to that of the baseline methods, we 
conducted a qualitative evaluation. For Latin and Korean characters, we trained our model 
using the aforementioned settings. At inference time, we use few-shot stylized Latin characters 
as inputs and performed content transfer by extracting a geometric representation of the 
content. As shown in Fig. 3, the synthesized font images from our model have higher quality 
than those from the baseline methods on very thin font styles. The baseline methods tend to 
generate completely blank images on very thin style fonts but yield acceptable results on bold 
style fonts. The red boxes in Fig. 3 highlight the few-shot stylized characters given to the 
model at inference time to map content.  

For Korean characters, we trained the model on 512 base characters. At inference time, we 
generated 2,350 characters using few-shot stylized characters for each distinct font style. As 
shown in Fig. 4, our model synthesizes realistic images and is able to capture small strokes 
and curve information. One possible reason for this good performance is the geometric 
representation of content in our model. By using geometric representations and multiple font 
style images, small stroke information can be captured. Additionally, the losses introduced in 
our model make it possible to learn structural and feature-level statistics of font styles in an 

Fig. 2. Visual comparison of Latin glyph images synthesized by the proposed and baseline methods. 
The red box shows the few-shot stylized characters given to the model at inference time. The baseline 

methods (pix2pix and zi2zi) fail to generate the output images when the target font style is thin (as 
shown in the results of Target-Style 2, Target-Style 3).  
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efficient manner. Our model can capture sufficient style and structure representations to learn 
high and low-level font details higher and lower-level font details.   

5.4.2 Quantitative Analysis:  
Although visual appearance intuitively reflects the quality of synthesized results, to obtain a 
high-level performance indication for the entire dataset, quantitative evaluation is necessary. 
For quantitative evaluation, we performed reference- and non-reference-based image 
assessments. In many images generation tasks, reference-based evaluations can be performed 
when ground-truth data are available. However, non-reference-based evaluations can be 
performed when ground-truth data are not available. This method only requires a generated 
image whose quality is being assessed.   

Fig. 4. Visual comparison of Korean glyph images synthesized by the proposed and 
baseline methods. The content and style were unseen for the model. Our model outperforms 

the baseline methods and has the ability to capture small stroke information. 
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5.4.2.1 Reference-based image quality evaluation 
For reference-based evaluation, we adopt three commonly used metrics for image assessment 
tasks: SSIM [40], spatial alignment measure (MSE), and peak signal-to-noise ratio (PSNR) 
[41]. All experiments on Latin and Korean characters were performed using the same metrics. 
The SSIM measures the similarity between the ground truth and generated images from a 
structural perspective. Values near zero indicate no similarity and values close to one indicate 
high similarity. MSE measures the difference between images at the pixel level. PSNR 
measures image distortion and noise between images. A high PSNR value indicates high image 
quality. MSE and PSNR estimate absolute error, whereas SSIM measures similarity by 
considering perceived changes in structural information. 

As shown in Table 1, we statistically compared the proposed method to the baseline 
methods. We performed quantitative experiments by computing the average values of all 
characters based on the total number of characters in each distinct font style. The results shown 
in Table 1 indicate that our method outperforms the baseline methods. Additionally, as shown 
in Table 2, we computed the image distortion and noise for the first five characters in Style-1 
and Style-2 of the fonts shown in Fig. 3. To evaluate the image quality of the synthesized 
glyphs, we computed the PSNR on a few glyphs instead of all glyphs.  
 

Table 1. Quantitative comparison on English glyph image dataset. 

 
 

Table 2. Image distortion measure on English glyph images from character A to E.  
The higher PSNR value shows the high image quality. 

 
    

Table 3. Quantitative comparison on Korean glyph image dataset.

 
 

We utilized the same quantitative evaluation measures for the Korean glyph images. As 
shown in Tables 3 and 4, our model outperforms the baseline methods from a structural and 
quantitative perspective. To compute image distortion measures, we only performed testing 
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on the first three Korean characters in Style-1 in Fig. 4. 
 

Table 4. Image distortion measure on Korean glyph images of first three characters of Style-1.  

 

5.4.2.2 No-reference image quality evaluation 
To perform no-reference-based image quality assessment, we measured the accuracy of 
synthesized glyphs. For this evaluation, ground-truth images were not required. To measure 
the classification accuracy of the generated glyphs, we trained a classifier on the Korean and 
Latin datasets. The goal was to determine the legibility characteristics of the synthesized 
glyphs. We also analyzed how well the model captured and mapped the target style onto the 
content. In Tables 5 and 6, we present the legibility accuracy measures for the proposed 
method and baseline methods for the Latin and Korean synthesized glyphs, respectively. One 
can clearly see that our model yields higher classification accuracy than the baseline methods, 
which fulfills the readability and consistency characteristics of the glyphs between styles and 
contents. 
 

Table 5. Legibility measure on English glyph images 

 
 

Table 6. Legibility measure on Korean glyph images 

 

5.5 Ablation Study 
To investigate the effectiveness of the proposed approach, we performed an ablation study 
from the architecture, loss, and performance perspectives. 

5.5.1 Fixed-reference font instead of geometric representation as content  
We wished to answer the following questions. Why do we need to select inner and outer 
structures for content references instead of using complete font images? Why do we need to 
use k stylized images instead of a single style reference image? To answer these questions, we 
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conducted an experiment in which we trained our model using a fixed reference font image as 
content instead of a geometric representation and a single style reference image instead of a 
set of target stylized images. The model was trained using the same experimental settings 
discussed above. The only differences are the inputs for  𝐸𝐸𝑠𝑠𝑠𝑠 and 𝐸𝐸𝑠𝑠𝑠𝑠.  

As shown in Fig. 5, we determined that the generated content follows the structure and 
style of the reference font instead of the target font. Additionally, we found that using a single 
font style image to capture style information is insufficient, particularly when there is large 
dissimilarity between the content and style. This makes it difficult for the model to capture the 
underlying details of the target style. This issue is most prominent for very thin stylized target 
fonts because performing a collection of convolutional operations on a single thin-style image 
leads to a loss of spatial information in deeper layers, such as exact small stroke information. 
Selecting inner and outer structures for input content does not restrict the model to following 
a given content font image (non-geometric). Additionally, the model has sufficient structural 
information regarding the content in the form of underlying structures. Therefore, a thin style 
can also be mapped by taking advantage of content skeleton information, which is not possible 
if we use a complete font image.  

 
Fig. 5. Impact of conditioning on fixed font image  

5.5.2 Impact of skip-layers between encoders 
To verify the efficacy of skip layers, we conducted an experiment in which we removed the 
skip connections between  𝐸𝐸𝑠𝑠𝑠𝑠 and 𝐸𝐸𝑠𝑠𝑠𝑠. We did not pass the content information to 𝐸𝐸𝑠𝑠𝑠𝑠 and only 
the latent content information was added to the latent style. The connection between 𝐸𝐸𝑠𝑠𝑠𝑠 and 
𝐺𝐺𝑌𝑌 remained the same. As shown in Fig. 6, the model attempts to map the target style, but 
cannot capture content efficiently. Therefore, the model does not synthesize the correct content 
because it does not have sufficient content information. It only utilizes latent information, which 
is not sufficient for representing the content structure, particularly in the case of font synthesis 
tasks. 

 
Fig. 6. Results without skip-layers between content and style extractor  

5.5.3 Effects of loss functions 

5.5.3.1 Effect of Structural Similarity Loss 
We conducted an experiment by including and excluding structural similarity loss. We 
introduced this loss in the generator to learn structural and semantic information effectively 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022                                  1181 

from the content and style perspectives. We trained the model without structural similarity loss 
and evaluated it using few-shot stylized characters. As shown in Fig. 7, the model can generate 
the target style, but it ignores small stroke information. Therefore, to learn small stroke 
information more effectively, ℒ𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠 plays a vital role. 
 

 
Fig. 7. Model results without structural similarity loss 

5.5.3.2 Effect of Feature Matching Loss 
We conducted an experiment by including and excluding feature matching loss. We introduced 
this loss in the generator to synthesize high-quality glyph images at the feature space level. 
Additionally, it is necessary to learn sufficient style representations from feature maps. As 
shown in Fig. 8, the model is able to learn the style and structure, but it has poor smoothness 
and overall image quality. Therefore, this loss plays a vital role in the synthesis of high-quality 
images. These effects are also visible in Figs. 3 and 4. 
 

 
Fig. 8. Model results without feature matching loss 

5.5.4 Cross-language assessment 
To verify the generalization capabilities of the proposed method, we performed a cross-
language assessment. We analyzed the model based on contents and styles that were not seen 
by the model at the time of training. We trained our model on Korean characters and k stylized 
images for each distinct font style. However, at the time of testing, we used unseen Chinese 
content characters and few-shot Chinese font style images as inputs for the model to verify its 
generalization capabilities. As shown in Fig. 9, the model yields impressive results because it 
has sufficient structural and style information. Therefore, it can efficiently capture contents 
and styles. The input forms of the content characters are the same as those for Korean alphabet 
characters in terms of their geometric representations.  

5.5.5 Impact of distinct edge and skeleton encoders for content feature 
extraction 
We wished to answer the following question. Why do we use a single encoder for extracting 
the inner and outer structures of content instead of using a separate encoder for each skeleton 
and edge? To answer this question, we constructed a model with three different encoders for 
the content skeletons, content edges, and style reference inputs. During training, we 
determined that the model size and computational cost increased when we downsampled each 
input image using deeper layers. At the time of testing, we found the model generated 
acceptable results overall, but it failed on fonts that had higher similarity to the content because 
of excessive information in the feature space regarding the target style and content.  
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Fig. 9. Chinese characters synthesized by the proposed model. Note that the content and style were 

not seen by the model. 

5.5.6 Failure cases 
Can our model generate unseen content images during inference time? To get the answer to 
this question we conducted an experiment where we used our pre-trained model on English 
alphabets and during inference time, we gave it unseen character contents. By unseen character 
content we mean the characters which were not observed during training. For these contents 
we picked the Arabic language letters which are cursive and stylish and are very different from 
the English alphabets overall structure. We used 4 randomly selected style images representing 
the observed style of English alphabets and unseen content of Arabic letters as skeleton and 
edge inputs for our content encoder. We observed that our model somehow generated the 
contents by filling the shape of the contents but overall, the model failed to generate clean 
characters in both style and content wise scenario as shown in Fig. 10. The obvious possible 
reason to this failure is the unseen content of the letters which are very different to the seen 
content by the model.  
 

 
Fig. 10. Our proposed model fails at generating unseen content. In this case the model is unable to 

transfer seen style from English alphabets to unseen Arabic unseen content input. 
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6. Conclusion 
In this paper, we proposed a geometric-content-guided cGAN that generates high-quality fonts. 
Our method is based on two separate encoders: one for content representation and another for 
style extraction from k input characters. By utilizing geometric information from the content 
and a few stylized images, our model can generate a complete font set with consistent styles 
and contents in terms of the target and source characters, respectively. Extensive experiments 
were conducted to demonstrate the superiority of the proposed method compared to state-of-
the-art methods. An ablation study, as well as qualitative and quantitative experiments, 
demonstrated the effectiveness of the proposed method. 
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